Dynamic Models of Shorebird Migration and Their Application to Shorebird Conservation in the Southeast: An Adaptive Management Framework

August 28, 2002

Overview

- project motivation
- •goals & objectives
- proposed approach
- needs and opportunities

Motivation

- established national agenda
- spawned a regional plan for SE coastal plain
- habitat conservation necessary for successful migration through the SE

•effective habitat conservation dependent on understanding the dynamics of migration (e.g., use of stop-over sites)

Motivation

Regional habitat requirement for spring migrating shorebirds:

$$ha = \begin{pmatrix} migratory \\ pop\ size \end{pmatrix} \times \begin{pmatrix} residency\ time \\ (days) \end{pmatrix} \times \begin{pmatrix} food\ consumption(g) \\ day \end{pmatrix} \div \begin{pmatrix} food\ availability(g) \\ ha \end{pmatrix}$$

- How do the components vary over the range of spatial and temporal scales, as a function of controlled and uncontrolled environmental factors?
- •What is the response of shorebird populations to this variation (i.e., effects on survival, reproduction, movements)?
- •How should managers respond to these dynamics to best meet conservation goals?

Goals

- a partnership of researchers and NWR managers in the SE
- to develop and apply decision-support tools in accordance with
- •an adaptive process of shorebird-conservation planning, implementation, and evaluation

Objectives

•predict (model) movements of spring-migrating shorebirds through the SE, as a function of controlled and uncontrolled environmental conditions (<u>the "research" piece</u>)

 use those predictions to support decision-making and evaluation by managers (<u>the "management" piece</u>)

A Modeling Framework....

- multiple scales of system dynamics& decision making and coherent scaling
- •focus on refuge mgmt, but with large-scale context
- explicitly includes shorebird vital rates
- used to guide decision making and monitoring & research design

N = population size

S =survival probablity

P = recruitment rate

 Ψ = movement probability

 $(S\Psi)$ = transition probability

$$N^{A} = N^{F} \left(S^{FA} + P \right)$$

$$N^{B} = N^{A} S^{AB}$$

$$N^{C} = N^{B} S^{BC}$$

$$N^{D} = N^{C} \left(\Psi^{CD} S^{CD} \right)$$

$$N^{E} = N^{D} S^{DE}$$

$$N^{F} = N^{E} S^{EF} + N^{C} \left(1 - \Psi^{CD} \right) S^{CF}$$

$$\begin{split} N^{a} &= N^{d} \left(\Psi^{Da} S^{Da} \right) \\ N^{b} &= N^{a} S^{ab} \\ N^{c} &= N^{b} \left(\Psi^{bc} S^{bc} \right) + N^{D} \left(\Psi^{Dc} S^{Dc} \right) \\ N^{d} &= N^{c} S^{cd} \\ N^{e} &= N^{d} \left(\Psi^{de} S^{de} \right) + N^{b} \left(\Psi^{be} S^{be} \right) + N^{D} \left(\Psi^{De} S^{De} \right) \end{split}$$

- •scale-specific management objectives (What are we trying to achieve at each spatio-temporal scale and how will we measure success?)
- •scale-specific management options (What are the array of management options available to managers at the various scales, and what are their constraints?)
- •<u>spatially explicit population model(s)</u>
 (What are the key sources of uncertainty in predicting responses to management?)
- •<u>integrated ecological monitoring & research</u> (How do data-collection programs need to be designed or re-designed to help predict and verify system responses?)

Timeline

Needs

 USFWS - staff time & funds for project planning & coordination, technical support, implementation of mgmt actions on NWRs, and monitoring

+

 USGS - research on migration ecology, development of monitoring protocols and decision-support tools

BIG \$

Opportunities

- •semipalmated sandpipers, subject of on-going research in the east, have habitat requirements similar to other calidrids
- active impoundment management ongoing at key refuges
- coordinated shorebird monitoring on NWRs in the SE (SAMBI)
- •distributed expertise (SEAMG, NC Coop, NCSU, PWRC) (Nichols, Pollock, Collazo)
- taps into a much broader regional and national effort via the U.S. Shorebird Conservation Plan

An adaptive management program of this scope will require an institutional commitment at the highest levels.

- leadership
- dedication
- coordination
- *staff
- money
- •long-term view

Can you help?

